36 research outputs found

    Connecting the Dots: Towards Continuous Time Hamiltonian Monte Carlo

    Get PDF
    Continuous time Hamiltonian Monte Carlo is introduced, as a powerful alternative to Markov chain Monte Carlo methods for continuous target distributions. The method is constructed in two steps: First Hamiltonian dynamics are chosen as the deterministic dynamics in a continuous time piecewise deterministic Markov process. Under very mild restrictions, such a process will have the desired target distribution as an invariant distribution. Secondly, the numerical implementation of such processes, based on adaptive numerical integration of second order ordinary differential equations is considered. The numerical implementation yields an approximate, yet highly robust algorithm that, unlike conventional Hamiltonian Monte Carlo, enables the exploitation of the complete Hamiltonian trajectories (hence the title). The proposed algorithm may yield large speedups and improvements in stability relative to relevant benchmarks, while incurring numerical errors that are negligible relative to the overall Monte Carlo errors

    Connecting the Dots: Numerical Randomized Hamiltonian Monte Carlo with State-Dependent Event Rates

    Get PDF
    Numerical generalized randomized Hamiltonian Monte Carlo is introduced, as a robust, easy to use and computationally fast alternative to conventional Markov chain Monte Carlo methods for continuous target distributions. A wide class of piecewise deterministic Markov processes generalizing Randomized HMC (Bou-Rabee and Sanz-Serna) by allowing for state-dependent event rates is defined. Under very mild restrictions, such processes will have the desired target distribution as an invariant distribution. Second, the numerical implementation of such processes, based on adaptive numerical integration of second order ordinary differential equations (ODEs) is considered. The numerical implementation yields an approximate, yet highly robust algorithm that, unlike conventional Hamiltonian Monte Carlo, enables the exploitation of the complete Hamiltonian trajectories (hence, the title). The proposed algorithm may yield large speedups and improvements in stability relative to relevant benchmarks, while incurring numerical biases that are negligible relative to the overall Monte Carlo errors. Granted access to a high-quality ODE code, the proposed methodology is both easy to implement and use, even for highly challenging and high-dimensional target distributions. Supplementary materials for this article are available online.publishedVersio

    Log-density gradient covariance and automatic metric tensors for Riemann manifold Monte Carlo methods

    Full text link
    A metric tensor for Riemann manifold Monte Carlo particularly suited for non-linear Bayesian hierarchical models is proposed. The metric tensor is built from symmetric positive semidefinite log-density gradient covariance (LGC) matrices, which are also proposed and further explored here. The LGCs generalize the Fisher information matrix by measuring the joint information content and dependence structure of both a random variable and the parameters of said variable. Consequently, positive definite Fisher/LGC-based metric tensors may be constructed not only from the observation likelihoods as is current practice, but also from arbitrarily complicated non-linear prior/latent variable structures, provided the LGC may be derived for each conditional distribution used to construct said structures. The proposed methodology is highly automatic and allows for exploitation of any sparsity associated with the model in question. When implemented in conjunction with a Riemann manifold variant of the recently proposed numerical generalized randomized Hamiltonian Monte Carlo processes, the proposed methodology is highly competitive, in particular for the more challenging target distributions associated with Bayesian hierarchical models

    Simulated maximum likelihood for general stochastic volatility models: a change of variable approach

    Get PDF
    Maximum likelihood has proved to be a valuable tool for fitting the log-normal stochastic volatility model to financial returns time series. Using a sequential change of variable framework, we are able to cast more general stochastic volatility models into a form appropriate for importance samplers based on the Laplace approximation. We apply the methodology to two example models, showing that efficient importance samplers can be constructed even for highly non-Gaussian latent processes such as square-root diffusions.Change of Variable; Heston Model; Laplace Importance Sampler; Simulated Maximum Likelihood; Stochastic Volatility

    Efficient high-dimensional importance sampling in mixture frameworks

    Get PDF
    This paper provides high-dimensional and flexible importance sampling procedures for the likelihood evaluation of dynamic latent variable models involving finite or infinite mixtures leading to possibly heavy tailed and/or multi-modal target densities. Our approach is based upon the efficient importance sampling (EIS) approach of Richard and Zhang (2007) and exploits the mixture structure of the model when constructing importance sampling distributions as mixture of distributions. The proposed mixture EIS procedures are illustrated with ML estimation of a student-t state space model for realized volatilities and a stochastic volatility model with leverage effects and jumps for asset returns. --dynamic latent variable model,importance sampling,marginalized likelihood,mixture,Monte Carlo,realized volatility,stochastic volatility

    The Gibbs Sampler with Particle Efficient Importance Sampling for State-Space Models

    Full text link
    We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially high-dimensional state trajectories. We propose to combine PG with a generic and easily implementable SMC approach known as Particle Efficient Importance Sampling (PEIS). By using SMC importance sampling densities which are approximately fully globally adapted to the targeted density of the states, PEIS can substantially improve the mixing and the efficiency of the PG draws from the posterior of the states and the parameters relative to existing PG implementations. The efficiency gains achieved by PEIS are illustrated in PG applications to a univariate stochastic volatility model for asset returns, a non-Gaussian nonlinear local-level model for interest rates, and a multivariate stochastic volatility model for the realized covariance matrix of asset returns

    Estimating the GARCH Diffusion: Simulated Maximum Likelihood in Continuous Time

    Get PDF
    A new algorithm is developed to provide a simulated maximum likelihood estimation of the GARCH diffusion model of Nelson (1990) based on return data only. The method combines two accurate approximation procedures, namely, the polynomial expansion of Aït-Sahalia (2008) to approximate the transition probability density of return and volatility, and the Efficient Importance Sampler (EIS) of Richard and Zhang (2007) to integrate out the volatility. The first and second order terms in the polynomial expansion are used to generate a base-line importance density for an EIS algorithm. The higher order terms are included when evaluating the importance weights. Monte Carlo experiments show that the new method works well and the discretization error is well controlled by the polynomial expansion. In the empirical application, we fit the GARCH diffusion to equity data, perform diagnostics on the model fit, and test the finiteness of the importance weights.Ecient importance sampling; GARCH diusion model; Simulated Maximum likelihood; Stochastic volatility

    Simulated Maximum Likelihood Estimation for Latent Diffusion Models

    Get PDF
    In this paper a method is developed and implemented to provide the simulated maximum likelihood estimation of latent diffusions based on discrete data. The method is applicable to diffusions that either have latent elements in the state vector or are only observed at discrete time with a noise. Latent diffusions are very important in practical applications in nancial economics. The proposed approach synthesizes the closed form method of Aït-Sahalia (2008) and the ecient importance sampler of Richard and Zhang (2007). It does not require any inll observations to be introduced and hence is computationally tractable. The Monte Carlo study shows that the method works well in finite sample. The empirical applications illustrate usefulness of the method and find no evidence of infinite variance in the importance sampler.Closed-form approximation; Diusion Model; Ecient importance sampler
    corecore